

The USGS Perspective on Copper as a Critical Mineral

American Copper Council Fall Meeting November 9, 2023

Steven M. Fortier, PhD

Director, National Minerals Information Center U.S. Geological Survey

U.S. Department of the Interior U.S. Geological Survey

National Minerals Information Center (NMIC)

Mission

- To collect, analyze, and disseminate information on the domestic and international supply of and demand for non-fuel minerals and materials essential to the U.S. economy and national security.
- Objective
 - Provide decision makers with the information required to ensure that the U.S. has an adequate supply of minerals and materials to meet U.S. needs, at an acceptable cost with regard to environmental, energy, and economic factors.

Mineral Information Collection

- More than 140 years of mineral information experience
 - U.S. Geological Survey: 1882-1924
 - U.S. Bureau of Mines: 1925-1995
 - U.S. Geological Survey: 1996 present
- Domestic mineral information collected on a monthly, quarterly, and annual basis
 - 18,000 mineral related production and consumption establishments
 - 40,000 (voluntary) survey forms completed annually
- Continuous record of mineral commodity supply, consumption, imports, exports, recycling, world production: DS-140

≈USGS

- Global mineral information collection
 - Mineral questionnaires to ~145 countries
 - Site visits
 - Membership on domestic and international mineral related committees
 - Coordination with organizations from other governments and trade associations
 - Reports from economic officers at U.S. embassies
 - Mineral industry reports
 - Company reports

2023 Mineral Commodity Summaries

Earliest comprehensive source of domestic and international mineral production data for the prior year.

- Issued annually at the end of January.
- More than 90 individual minerals and materials are covered by 2-page synopses.
- Information on events, trends, and issues for each mineral commodity.
- Production, consumption, trade, stockpile data and analysis.
- U.S. Net Import Reliance.

The Energy Act of 2020 defines "critical minerals" as the minerals, elements, substances, or materials that "(i) are essential to the economic or national security of the United States; (ii) the supply chain of which is vulnerable to disruptions (including restrictions associated with foreign political risk, abrupt demand growth, military conflict, violent unrest, anti-competitive or protectionist behaviors, and other risks throughout the supply chain); and (iii) serve an essential function in the manufacturing of a product (including energy technology-, defense-, currency-, agriculture-, consumer electronics-, and healthcare-related applications), the absence of which would have significant consequences for the economic or national security of the United States" (Public Law 116–260, section 7002(c)(4)(A)).

A risk modeling framework is used to assessing mineral commodities supply chains that pose the greatest risk to the U.S. economy.

Science for a changing world

Methodology and Technical Input for the 2021 Review and Revision of the U.S. Critical Minerals List

[Supply risk		Leading producing countries	Byproduct status				
commodity 2		Recency- weighted mean	Names and process stages	Predominately produced as a	Host commodities			
De Illis see		0.07	Ohina	byproduct	Downite vice			
Jailium		0.67	China Drawi	tes	Bauxie, zhc			
liobium		0.66	Brazi	NO	— Connect ninkal			
		0.65	DRC (mining), China (retining)	Yes	Copper, nickei			
eodymium		0.65	China (mining and refining)	Yes	Iron ore, ttanium, zirconium, other rare earths			
utnenium		0.63	South Africa	Yes	Platinum, nickel			
noaium		0.62	South Africa	Yes	Platinum, nickel			
ysprosium		0.61	China (mining and retining)	Yes	Iron ore, titanium, zirconium, other rare earths			
uminum		0.60	China (alumina and aluminum); Australia (bauxite	NO	-			
uorspar		0.60	China	NO	-			
atinum		0.60	South Africa	No	-			
dium		0.59	South Africa	Yes	Platinum, nickel			
aseodymium		0.58	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths			
erium		0.56	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths			
nthanum		0.56	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths			
smuth		0.55	China	Yes	Lead, tungsten, copper, tin, molybdenum, fluorspar, zinc			
trium		0.54	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths			
ntimony		0.53	China	Yes	Lead, gold, other base and precious metals			
antalum		0.53	DRC	No	-			
afnium		0.51	France	Yes	-			
ungsten		0.51	China	No	-			
anadium		0.51	China	Yes	Steel slag from vanadiferous iron ore, spent catalysts			
n		0.50	China (mining and smelting)	No	-			
agnesium		0.49	China	No	-			
ermanium		0.49	China	Yes	Zinc, coal fly ash			
alladium		0.48	Russia	Yes	Nickel, platinum			
tanium		0.48	Australia (mineral concentrate), China (sponge)	No				
nc		0.48	China (mining and smelting)	No				
raphite		0.47	China					
hromium		0.47	South Africa	D	TT T			
senic		0.45	China	u -	$-H \cdot H \cdot$			
		0 41		<u>() —</u>	- 11 - 12 -			
			Supply Rick		Ţ Ţ			
			KISK associated with a					
			supply disruption					
AI	i components a <u>re</u>		Hazard					
			Likelihood of a supply					
nec	essary: each alone		disruption					
	occury, outrialone							
i	a on incufficient		Exposure —					
		De	Degree of exposure to a supply					
		De	diarunti					
	condition for risk		aisruption					
C								
C			Vulnerability					
C		Ability	vulnerability to withstand the effects of a					

Nassar, N.T., and Fortier, S.M., 2021, Methodology and technical input for the 2021 review and revision of the U.S. Critical Minerals List: U.S. Geological Survey Open-File Report 2021–1045, 31 p., https://doi.org/10.3133/ofr20211045.

	Supply Disruption Potential	Trade Exposure	Economic Vulnerability
Issue	Likelihood of a foreign supply disruption	Degree of exposure to a supply disruption	Ability to withstand the effects of a supply disruption
Indicator	Concentration of production in countries that may become unable or unwilling to supply the United States	Net import reliance as a percentage of apparent consumption	Annual expenditure on the mineral commodity by each industrial sector relative to each sector's profitability
	H H		United States Bureau 334112: Computer storage devices
FRASER INSTITUTE Annual Surv of Mining Companie	/ey s	Exports Stock additions	333249: Other industrial machinery mfg. 334510: Electromedical apparatus mfg. 339910: Jewelry and silverware mfg. 333611: Turbine and turbine generator set unit mfg. Automotive Petroleum
Willingness to Supply Index	6	Stock releasesApparent consumptionSecondary production (recycling)Apparent consumptionPrimary productionImage: Construction	Pt • Chemical • Electrical • Glass • Medical & dental • Jewelry • Other • Other • 336390: Other motor vehicle parts mfg. • 324110: Petroleum refineries • 325180: Other basic inorganic chemical mfg.

USGS science for a changing world

A subset of mineral commodities pose the greatest supply risk for the U.S. manufacturing sector.

	Supply Risk (SR)						k (SR)				Leading producing countries	Byproduct status				
Commodity	2007 2	2008 2	2009 201	0 20	11 201	2 2013	3 2014	2015	2016 2	2017 2018	Recency- weighted mean	Names and process stages	Predominately produced as a byproduct	Host commodities		
Gallium											0.67	China	Yes	Bauxite, zinc		
Niobium											0.66	Brazil	No	_		
Cobalt											0.65	DRC (mining), China (refining)	Yes	Copper, nickel		
Neodymium											0.65	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Ruthenium											0.63	South Africa	Yes	Platinum, nickel		
Rhodium											0.62	South Africa	Yes	Platinum, nickel		
Dysprosium											0.61	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Aluminum											0.60	China (alumina and aluminum); Australia (bauxite)	No	_		
Fluorspar											0.60	China	No	-		
Platinum											0.60	South Africa	No	_		
Iridium											0.59	South Africa	Yes	Platinum, nickel		
Praseodymium											0.58	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Cerium											0.56	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Lanthanum											0.56	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Bismuth											0.55	China	Yes	Lead, tungsten, copper, tin, molybdenum, fluorspar, zinc		
Yttrium											0.54	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Antimony											0.53	China	Yes	Lead, gold, other base and precious metals		
Tantalum											0.53	DRC	No	_		
Hafnium											0.51	France	Yes	Zirconium		
Tungsten											0.51	China	No	-		
Vanadium											0.51	China	Yes	Steel slag from vanadiferous iron ore, spent catalysts		
Tin											0.50	China (mining and smelting)	No	-		
Magnesium											0.49	China	No	-		
Germanium											0.49	China	Yes	Zinc, coal fly ash		
Palladium											0.48	Russia	Yes	Nickel, platinum		
Titanium											0.48	Australia (mineral concentrate), China (sponge)	No	_		
Zinc											0.48	China (mining and smelting)	No	-		
Graphite											0.47	China	No	-		
Chromium											0.47	South Africa	No	-		
Arsenic											0.45	China	Yes	Copper, gold, lead, zinc		
Barite											0.44	China	No	-		
Indium											0.41	China	Yes	Zinc		
Samarium											0.40	China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths		
Manganese											0.40	South Africa	No	-		
Lithium											0.40	Australia (mining), China (refining)	No	-		
Tellurium	L										0.40	China	Yes	Copper, lead, nickel, platinum, zinc		

Supply risk

High risk

Low risk

Nassar, N.T., and Fortier, S.M., 2021, Methodology and technical input for the 2021 review and revision of the U.S. Critical Minerals List: U.S. Geological Survey Open-File Report 2021–1045, 31 p., https://doi.org/ 10.3133/ ofr20211045.

		Supply risk																
Commodity	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017 20	18	Rece weighte	ncy- d mean				
Gallium	\mathbf{D}													0.67				
Niobium														0.66				
Cobalt														0.65				
Neodymium														0.65				
Ruthenium														0.63				
		World	✓ Busir	ness 🗸 🛛 🛚	larkets ∨	Sustainab	oility ∨ Le	egal∨ M	∕lore ∨	E	ВС	•	Sign in	Home	News	Sport	Reel	Worklife
											EWS							

Commodities

China gallium, germanium export curbs kick in; wait for permits starts

Gallium and germanium: What China's new move in microchip war means for world

Business | Market Data | New Tech Economy | Artificial Intelligence | Technology of Business | Economy

Home War in Ukraine Climate Video World US & Canada UK Business Tech Science

(§ 15 hours ago

GALLIUM

(Data in kilograms of contained gallium unless otherwise noted)

Salient Statistics—United States:	<u>2018</u>	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u> ^e
Production, primary					
Imports for consumption:					
Metal	32,000	5,740	4,430	8,890	12,000
Gallium arsenide wafers (gross weight)	444,000	272,000	178,000	306,000	550,000
Exports	NA	NA	NA	NA	NA
Consumption, reported	15,000	14,900	15,700	17,100	18,000
Price, average unit value of imports, dollars per kilogram:					
High-purity, refined ¹	508	573	596	625	640
Low-purity, primary ²	185	153	163	254	420
Stocks, consumer, yearend	2,920	2,850	2,920	2,810	2,800
Net import reliance ³ as a percentage of reported consumption	100	100	100	100	100

<u>Recycling</u>: Old scrap, none. Substantial quantities of new scrap generated in the manufacture of GaAs-based devices were reprocessed to recover high-purity gallium at one facility in New York.

China's share of global production has increased markedly over the past three decades for many mineral commodities.

Nassar, N.T., Alonso, E., and Brainard, J.L., 2020, Investigation of U.S. Foreign Reliance on Critical Minerals—U.S. Geological Survey Technical Input Document in Response to Executive Order No. 13953 Signed September 30, 2020 (Ver. 1.1, December 7, 2020): U.S. Geological Survey Open-File Report 2020–1127, 37 p., https://doi.org/10.3133/ofr20201127.

Germanium	0.49 China	Yes	Zinc, coal fly ash
Palladium	0.48 Russia	Yes	Nickel, platinum
Titanium	0.48 Australia (mineral concentrate), China (sponge)	No	-
Zinc	0.48 China (mining and smelting)	No	-
Graphite	0.47 China	No	-
Chromium	0.47 South Africa	No	-
Arsenic	0.45 China	Yes	Copper, gold, lead, zinc
Barite	0.44 China	No	-
Indium	0.41 China	Yes	Zinc
Samarium	0.40 China (mining and refining)	Yes	Iron ore, titanium, zirconium, other rare earths
Manganese	0.40 South Africa	No	-
Lithium	0.40 Australia (mining), China (refining)	No	-
Tellurium	0.40 China	Yes	Copper, lead, nickel, platinum, zinc
Lead	0.39 China (mining and refining)	No	-
Potash	0.38 Canada	No	-
Strontium	0.36 China	No	-
Rhenium	0.36 Chile	Yes	Molybdenum, copper
Nickel	0.36 Indonesia (mining), China (refining)	No	-
Copper	0.34 Chile (mining), China (smelting and refining)	No	-
Beryllium	0.33 United States	No	-
Feldspar	0.32 Turkey	No	-
Phosphate	0.25 China	No	-
Silver	0.25 Mexico	Yes	Zinc, lead, copper, gold
Mica	0.22 China	No	-
Selenium	0.23 Japan	Yes	Copper, lead, nickel, platinum, zinc
Supply risk			
Low risk High risk			

Nassar, N.T., and Fortier, S.M., 2021, Methodology and technical input for the 2021 review and revision of the U.S. Critical Minerals List: U.S. Geological Survey Open-File Report 2021–1045, 31 p., https://doi.org/10.3133/ofr20211045

Table 1. Threshold criteria for each supply risk component.

[ASI, ability to supply index; WSI, willingness to supply index]

		Supply risk component	
	Disruption potential	Trade exposure	Economic vulnerability
Threshold criteria description	Global production of the commodity outside the United States was concen- trated such that one-half was from a single country that was less able or less willing to continue to supply to the United States than the average country (specifically defined as the 75th per- centile ASI and WSI indicators), or an equivalent production distribution that resulted in the same normalized score.	One-half of U.S. con- sumption of the com- modity was obtained from foreign sources.	Annual expenditures on the commodity were equal to the median commodity expenditure (across all commodities and years evaluated) in a manufacturing industry that had a below average (75th percentile) operating profits-to-value- added ratio, or equivalent normalized score.
Normalized score corresponding to threshold criteria (0–1 scale)	0.20	0.50	0.64

COPPER

(Data in thousand metric tons of contained copper unless otherwise noted)

Salient Statistics—United States:	<u>2018</u>	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022^e</u>
Production:					
Mine, recoverable copper content	1,220	1,260	1,200	1,230	1,300
Refinery:					
Primary (from ore)	1,070	985	874	922	960
Secondary (from scrap)	41	44	43	49	40
Copper recovered from old (post-consumer) scrap ²	141	166	160	°170	160
Imports for consumption:					
Ore and concentrates	32	27	2	11	15
Refined	778	663	676	919	810
Exports:					
Ore and concentrates	253	356	383	347	330
Refined	190	125	41	48	30
Consumption:					
Reported, refined metal	1,820	1,810	1,770	1,770	1,800
Apparent, primary refined and old scrap ³	1,820	1,820	1,660	1,960	1,900
Price, annual average, cents per pound:					
U.S. producer, cathode (COMEX + premium)	298.7	279.6	286.7	432.3	410
COMEX, high-grade, first position	292.6	272.3	279.9	424.3	400
London Metal Exchange, grade A, cash	296.0	272.4	279.8	422.5	400
Stocks, refined, held by U.S. producers, consumers, and metal	244	110	118	117	120
exchanges, yearend					
Employment, mine and plant, number	11,700	12,000	11,000	11,400	12,000
Net import reliance ⁴ as a percentage of apparent consumption	33	37	38	44	41

2023 Mineral Commodity Summaries: https://doi.org/10.3133/mcs2023

Copper-Producing Mines in the United States

Leading U.S. Copper Producing Mines

U.S. Refined Copper Production

Total output in 2022 = 952 kt

- 555 kt copper via SX-EW (58%)
- 357 kt primary electrolytic copper (38%)
- 40 kt secondary fire-refined copper (4%)
- Leading companies in 2022:
 - Freeport-McMoRan 671 kt (70%) 8 ops.
 - (7 electrowon, 1 electrolytic)
 - Rio Tinto 148 kt (16%) 1 op. (electrolytic)
- 8 other companies account for the remaining 14% of production

China's share of global production has increased markedly over the past three decades for many mineral commodities.

Nassar, N.T., Alonso, E., and Brainard, J.L., 2020, Investigation of U.S. Foreign Reliance on Critical Minerals—U.S. Geological Survey Technical Input Document in Response to Executive Order No. 13953 Signed September 30, 2020 (Ver. 1.1, December 7, 2020): U.S. Geological Survey Open-File Report 2020–1127, 37 p., https://doi.org/10.3133/ofr20201127.

Department of Energy Critical Materials Assessment

Figure 3.2 Medium-term (2025-2035) criticality matrix

Figure 3.1 Short-term (2020–2025) criticality matrix

https://www.energy.gov/sites/default/files/2023-05/2023-critical-materials-assessment.pdf

Ongoing work seeks to improve and expand each of the components of supply risk.

Disruption Potential

Accounting of other hazards, such as natural hazards, impacts of climate change, and developing supply disruptions scenarios

Schnebele, E.; Jaiswal, K.; Luco, N.; Nassar, N. T. Natural Hazards and Mineral Commodity Supply: Quantifying Risk of Earthquake Disruption to South American Copper Supply. *Resources Policy* 2019, *63*, 101430.

Trade Exposure

Incorporating indirect trade, materials embedded in finished goods, and ownership of foreign mineral assets

Economic Vulnerability

Integrating economic input-output tables to quantify how disruptions might ripple through and impact downstream industries.

Alonso, E., Pineault, D.G., Gambogi, J., and Nassar, N.T., 2023, Mapping first to final uses for rare earth elements, globally and in the United States: Journal of Industrial Ecology, v. 27, no. 1, p. 312–322.

Manley, R.L., Alonso, E., and Nassar, N.T., 2022, A model to assess industry vulnerability to disruptions in mineral commodity supplies: Resources Policy, v. 78, p. 102889.

Increasing Transparency in Critical Materials Price, Supply, and Demand Forecasts

DARPA OPEN program seeks technology solutions to enhance supply chain resilience, national security by increasing global critical materials market transparency

OUTREACH@DARPA.MIL 10/25/2023

In partnership with the United States Geological Survey (USGS), the DARPA Open Price Exploration for National Security (OPEN) program aims to enhance supply chain resilience and national security by spurring the development of technology to increase transparency in critical commodity pricing and supply, demand, and capacity forecasting.

OPEN seeks to analyze commercially and publicly available information on fundamental and observable input costs to construct transparent structural price predictions, and to use advances in time series forecasting, economic modeling, and machine learning to create accurate and precise supply and demand forecasts.

OPEN seeks to enhance supply chain resilience, national security by increasing global critical materials market transparency

Contact

Steven M. Fortier, Ph.D., Center Director USGS – National Minerals Information Center <u>sfortier@usgs.gov</u> (571) 586-8587

